
Quantitative Understanding in Biology 
Module III: Linear Difference Equations 
Lecture II: Complex Eigenvalues 

Introduction 
In the previous section, we considered the generalized two-

variable system of linear difference equations, and showed that 

the eigenvalues of these systems are given by the equation… 
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…where b = (a11 + a22), c=(a22 ∙ a11 – a12 ∙ a21), and ai,j are the 

elements of the 2 x 2 matrix that define the linear system. 

Inspecting this relation shows that it is possible for the eigenvalues 

of such a system to be complex numbers. Because our plants and 

seeds model was our first look at these systems, it was carefully 

constructed to avoid this complication [exercise: can you show that 

this model cannot produce complex eigenvalues]. However, many 

systems of biological interest do have complex eigenvalues, so it is important that we understand how 

to deal with and interpret them. We’ll begin with a review of the basic algebra of complex numbers, and 

then consider their meaning as eigenvalues of dynamical systems. 

A Review of Complex Numbers 
You may recall that complex numbers can be represented with the notation a+bi, where a is the real 

part of the complex number, and b is the imaginary part. The symbol i denotes √   (recall i2 = -1, i3 = -i 

and i4 = +1). Hence, complex numbers can be thought of as points on a complex plane, which has real 

and imaginary axes. In some disciplines, such as electrical engineering, you may see √   represented by 

the symbol j. 

This geometric model of a complex number suggests an alternate, but equivalent, representation. Just 

as we can transform any point in Cartesian space into polar coordinates, we can choose to represent 

complex numbers as a distance, r, from 0+0i, and an angle, φ, from the real axis. Basic trigonometry 

gives us… 
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http://www.xkcd.org/179 
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When writing complex numbers in this polar form, we use this notation:     . This is not an arbitrary 

representation, and can be derived by considering the infinite series representations of sin x, cos x, and 

ex. You may recall the series for the basic trigonometric functions: 

       
  

  
 
  

  
 
  

  
 
  

  
   

       
  

  
 
  

  
 
  

  
 
  

  
   

Now, our geometric interpretation of a complex number implies … 

       [           ] 

…and the series expansions of sin x and cos x allow us to take this one step further… 
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Now let us consider the series expansion of ex. Recall… 

       
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
   

Now if we allow x to take on an imaginary value, specifically, φi, we get… 
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…or more generally 

      [          ] 

One of the main motivations for this representation of complex numbers is that it gives us an intuitive 

understanding of what it means to raise a complex number to an integer power. 

(    )
 
        

We see that when we raise a complex number to a power, its norm (or length) is scaled, and its angle is 

multiplied. This corresponds to a simultaneous scaling and rotation of the number in the complex plane. 

Interpreting Complex Eigenvalues 
Using the ‘polar’ representation of complex numbers just described, we are now in a position to 

interpret the meaning of a complex eigenvalue in a linear dynamical system. If we focus on the norm of 
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the eigenvalue, we see that raising a complex number to an arbitrarily large power will converge to 0+0i 

when the norm is less than one. The value will grow in an unbounded fashion if the norm is greater than 

unity, and the result will continue to rotate in the complex plane indefinitely with constant magnitude if 

the norm is exactly one. 

If the angular part of the complex number is non-zero, the complex number will spiral around the origin 

as n increases. The larger the angle, the higher the frequency (and the smaller the period) of rotation. 

We therefore expect to see periodic behavior with a characteristic period or frequency in systems with 

complex eignevalues. 

Note that everything we know about real eignevalues are just degenerate cases of the complex 

eigenvalue for which φ = 0 for positive numbers and φ = 180° for negative numbers. You can think of 

φ=0 as the limiting case of an infinitely long period of rotation. Also, a negative real eigenvalue 

corresponds to a 180° rotation every step, which is simply alternating sign. 

It is also worth noting that, because they ultimately come from a polynomial characteristic equation, 

complex eigenvalues always come in complex conjugate pairs. These pairs will always have the same 

norm and thus the same rate of growth or decay in a dynamical system. Also, they will be characterized 

by the same frequency of rotation; however, the directions of rotation will be opposing. 

Note that our dynamical systems are defined solely by real numbers (it is not clear what a complex plant 

or seed count would mean). It turns out that the eigenvectors of a dynamical systems become complex 

when the eigenvalues are complex; this occurs in such a manner that we the imaginary parts disappear 

in the final values of the dynamical system’s state variables. 

Example: Consider a linear dynamical system with a matrix M = [
           
          

] . We should get into 

the habit of trying to interpret model matrices when we see them, so before we go off and compute 

eigenvalues, let’s see if we can’t make sense of this matrix, even without any biological model behind it. 

The governing equation for this model is… 

[
    
    

]  [
           
          

] [
  
  
] 

We see that, left to its own devices (i.e., if there were no interaction with y), x will grow in an 

unbounded fashion, but slowly with a λ just over 1.0. A similar statement can be made for y. However, 

there are off-diagonal terms in our model matrix, and we see that larger values of y lead to reductions in 

x. However, reductions in x will lead to reductions in y. Thus we might intuitively expect that this system 

has the potential to exhibit oscillatory behavior. 

Now let us compute the eigenvalues of the model matrix. 
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>> M = [1.0005 -0.05; 0.05 1.0005]; ev = eig(M) 

 

ev = 

 

   1.0005 + 0.0500i 

   1.0005 - 0.0500i 

 
We see our complex conjugate eigenvalues, and observe that their norms are greater than 1. We can 

compute the angle of the first eigenvalue as follows: 

>> angle(ev(1)) 

ans = 

    0.0499 

>> 2*pi/ans 

ans = 

  125.8311 

 

So we expect a rotation every 126 steps or so. Let’s ‘simulate’ our systems and see where it goes in the 

first 126 steps… 

>> x = [50 50]; for (i=1:125) x(i+1,:) = M * x(i,:)'; end 

>> plot(x) 

>> plot(x(:,1), x(:,2)) 

 

We can, of course, simulate the system for longer periods of time… 

>> x = [50 50]; for (i=1:1260) x(i+1,:) = M * x(i,:)'; end 

>> plot(x(:,1), x(:,2)) 

>> plot(x) 

 

Note that this model produces negative values for the variables. Fortunately, we did not specify what 

the model represents biologically, but in general one needs to think about the definitions of these 

models. Often physically realistic models will be prevented from producing non-negative values by the 

inclusion of non-linear terms.  For example, if were modeling rabbits and foxes, the number of rabbits 

eaten by foxes might be modeled by an equation such as. 

             (        )    (        ) (      ) 

You can think of the second term as some fraction of the number of encounters between rabbits and 

foxes. 

Consider the 3x3 model matrix M = [
             
      
      

]. It is a bit harder to figure out what this 

model will do long term by analyzing the matrix, but it should be clear from the eigenvalues… 



Complex Eigenvalues 
 

© Copyright 2008, 2013 – J Banfelder, Weill Cornell Medical College Page 5 
 

>> M = [0.8 -0.05 -0.05; 0.05 1.0 0; 0 0.05 1.0]; ev = eig(M) 

ev = 

   0.8097           

   0.9952 + 0.0252i 

   0.9952 - 0.0252i 

>> norm(ev(2)) 

ans = 

    0.9955 

 

How do you think this system will behave? 

>> x = [1 1 1]; for (i=1:1000) x(i+1,:) = M * x(i,:)'; end 

>> plot(x) 

>> plot3(x(:,1), x(:,2), x(:,3)) 

Reverse Engineering a 2x2 Linear Dynamical System 
We can use our knowledge of complex eigenvalues to reverse-engineer linear systems that have the 

properties that we want. Suppose that we want a system that decays 0.1% per step, and exhibits 

oscillatory behavior with a period of 30 steps. We know that we want the eigenvalues of this system to 

be            
 
   

  . 

We could continue with this specific numerical example, but it is not so difficult to generalize the 

problem to engineering a system with a growth parameter D and a period P. We seek to find a matrix 

  [
      
      

] such that its eigenvalues are given by 

       
 
   
  

Knowing that complex eigenvalues come in conjugate pairs, we’ll confine ourselves to only the first 

eigenvaue. We have 
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Recall that for a 2x2 system, we also know… 
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The real part of the solution comes from the first term in the relation above, so we can write… 
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We can arbitrarily decide that m11 = m22 and conclude… 

            
  

 
 

The imaginary part of the solution for λ comes from the second term, so we can write… 
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Substituting our knowledge of the trace of M into this relation (and rearranging a bit) gives… 

       
  

 
      ( )       ( ) 

      
  

 
       

  

 
       ( ) 

                 

         
  

 
        

  (      
  

 
)          

      
  

 
         

We will again make an arbitrary decision, this time that m12 = - m21, so we can finally write… 

             
  

 
 

Our final matrix is then… 

  [
    

  

 
     

  

 

    
  

 
    

  

 

] 

Thinking about non-dynamic linear systems 
So far, we have considered linear dynamic models. However, much of the linear algebra we have used 

can be used to describe generalized transformation. A matrix can also be thought of as an arbitrary 



Complex Eigenvalues 
 

© Copyright 2008, 2013 – J Banfelder, Weill Cornell Medical College Page 7 
 

transformation of inputs to outputs. Matrices can be used to describe the effects of a lens of a 

microscope on light or the net effect of an MR machine. Of course, not all processes are linear, so not all 

processes can be encoded exactly by a matrix (although with proper treatment these may be decent 

approximations). 

Consider the matrix we just derived for an oscillating system. If you imagine that what goes into the 

matrix is not two state variables in a dynamic system, but rather a pair of (x,y) coordinates, it should be 

clear that this matrix rotates the coordinates around the origin when D = 1.0. This is a standard rotation 

matrix, and is probably worth memorizing. 

In fact, you can feed this matrix more than just a single coordinate. The system below takes three points 

in space as input, and the output is those three points in space rotated around the origin by an angle θ. 

[
         
        

] [
      
      

] 

Example: Can you design a matrix that reports the average of three sensors. 

Similarly, the system below scales or zooms these points in or out of the origin by a factor D: 

[
  
  

] [
      
      

] 

Scaling and translation are two basic geometric transformations; the last is translation. Expressing 

translation operations in matrix form is a bit tricky because, technically speaking, translation is an affine, 

not a linear, operation (recall the difference between y = mx and y = mx + b). You can ‘fake’ these affine 

transformations by augmenting the matrices appropriately. The system below translates points in the x 

and y directions by Δx and Δy. 

[
               
               
   

]  [
    
    
   

] [
      
      
   

] 

For consistency, the rotation and translation matrices can also be cast in augmented form: 

          [
          
         
   

] 

        [
   
   
   

] 

Note that the associatively rule for matrix multiplication lets us combine these operations into a single 

matrix that will perform a composite operation. For example, a rotation about the point (1,1) can be 

represented as a three step process: 
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1. Translation by (-1, -1): This moves the point that was at (1,1) to (0,0). All other points go along 

for the ride. 

2. Rotation around the origin by an angle θ. 

3. Translation by (+1, +1): This moves the point now at the origin back to where it came from: (1,1). 

This process can be represented as 

[
   
   
   

] [
          
         
   

] [
    
    
   

] [
      
      
   

] 

 ([
   
   
   

] [
          
         
   

] [
    
    
   

]) [
      
      
   

] 

The term in parentheses can be computed once, and the process represented by a single matrix. For 

θ=30° this matrix is… 

>> theta = 30 * (2 * pi / 360); 

>> M1 = [1 0 1; 0 1 1; 0 0 1]; 

>> M2 = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1]; 

>> M3 = [1 0 -1; 0 1 -1; 0 0 1]; 

>> M = M1 * M2 * M3 

 

M = 

 

    0.8660   -0.5000    0.6340 

    0.5000    0.8660   -0.3660 

         0         0    1.0000 

 

 


